Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Abstract Immunotherapies have shown promising results in treating patients with hematological malignancies like multiple myeloma, which is an incurable but treatable bone marrow-resident plasma cell cancer. Choosing the most efficacious treatment for a patient remains a challenge in such cancers. However, pre-clinical assays involving patient-derived tumor cells co-cultured in anex vivoreconstruction of immune-tumor micro-environment have gained considerable notoriety over the past decade. Such assays can characterize a patient’s response to several therapeutic agents including immunotherapies in a high-throughput manner, where bright-field images of tumor (target) cells interacting with effector cells (T cells, Natural Killer (NK) cells, and macrophages) are captured once every 30 minutes for upto six days. Cell detection, tracking, and classification of thousands of cells of two or more types in each frame is bound to test the limits of some of the most advanced computer vision tools developed to date and requires a specialized approach. We propose TLCellClassifier (time-lapse cell classifier) for live cell detection, cell tracking, and cell type classification, with enhanced accuracy and efficiency obtained by integrating convolutional neural networks (CNN), metric learning, and long short-term memory (LSTM) networks, respectively. State-of-the-art computer vision software like KTH-SE and YOLOv8 are compared with TLCellClassifier, which shows improved accuracy in detection (CNN) and tracking (metric learning). A two-stage LSTM-based cell type classification method is implemented to distinguish between multiple myeloma (tumor/target) cells and macrophages/monocytes (immune/effector cells). Validation of cell type classification was done both using synthetic datasets andex vivoexperiments involving patient-derived tumor/immune cells. Availability and implementationhttps://github.com/QibingJiang/cell classification mlmore » « less
-
The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.more » « less
-
Abstract Conservation funding is currently limited; cost‐effective conservation solutions are essential. We suggest that the thousands of field stations worldwide can play key roles at the frontline of biodiversity conservation and have high intrinsic value. We assessed field stations’ conservation return on investment and explored the impact of COVID‐19. We surveyed leaders of field stations across tropical regions that host primate research; 157 field stations in 56 countries responded. Respondents reported improved habitat quality and reduced hunting rates at over 80% of field stations and lower operational costs per km2than protected areas, yet half of those surveyed have less funding now than in 2019. Spatial analyses support field station presence as reducing deforestation. These “earth observatories” provide a high return on investment; we advocate for increased support of field station programs and for governments to support their vital conservation efforts by investing accordingly.more » « less
An official website of the United States government
